Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,3-Bis(2-chlorophenyl)thiourea: a monoclinic polymorph

Chien Ing Yeo and Edward R. T. Tiekink*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 6 October 2011; accepted 11 October 2011

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.038 ; \omega R$ factor $=0.090$; data-to-parameter ratio $=18.3$.

The title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}$, represents a monoclinic polymorph of the previously reported orthorhombic form [Ramnathan et al. (1996). Acta Cryst. C52, 134-136]. The molecule is twisted with the dihedral angle between the benzene rings being $55.37(7)^{\circ}$. The $\mathrm{N}-\mathrm{H}$ atoms are syn to each other, which contrasts their anti disposition in the orthorhombic form. In the crystal, molecules assemble into zigzag chains along the c axis via $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds. Chains are connected into layers via $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, and these stack along the a axis.

Related literature

For background to the structural chemistry of thiocarbamides, see: Ho et al. (2005). For a related diarylthiourea structure, see: Kuan \& Tiekink (2007). For the structure of the orthorhombic polymorph, see: Ramnathan et al. (1996).

Experimental

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}$
$M_{r}=297.19$
Monoclinic, $P 2_{1} / c$
$a=11.9999$ (3) £
$b=14.6811$ (3) \AA
$c=8.0806$ (2) \AA
$\beta=109.509(1)^{\circ}$
$V=1341.84(5) \AA^{3}$

$Z=4$

$T=100 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=0.62 \mathrm{~mm}^{-1}$

Data collection
Bruker SMART APEX diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.644, T_{\text {max }}=0.746$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.090$
$S=1.02$
3090 reflections
169 parameters
2 restraints
$0.20 \times 0.06 \times 0.02 \mathrm{~mm}$

12491 measured reflections 3090 independent reflections 2291 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.052$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{n} \cdots \mathrm{S} 1^{\mathrm{i}}$	$0.87(2)$	$2.62(2)$	$3.4449(18)$	$159(2)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{n} \cdots \mathrm{S} 1^{\mathrm{i}}$	$0.87(2)$	$2.49(2)$	$3.3389(18)$	$166(2)$
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.95	2.79	$3.660(2)$	152
Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2} ;$ (ii)	$-x+2, y-\frac{1}{2},-z+\frac{3}{2}$.			

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans \& Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

The Ministry of Higher Education, Malaysia, is thanked for the award of a research grant (RG125/10AFR).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2125).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gans, J. \& Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.
Ho, S. Y., Bettens, R. P. A., Dakternieks, D., Duthie, A. \& Tiekink, E. R. T. (2005). CrystEngComm, 7, 682-689.

Kuan, F. S. \& Tiekink, E. R. T. (2007). Acta Cryst. E63, o4692.
Ramnathan, A., Sivakumar, K., Subramanian, K., Janarthanan, N., Ramadas, K. \& Fun, H.-K. (1996). Acta Cryst. C52, 134-136.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, o2965 [doi:10.1107/S1600536811041894]

1,3-Bis(2-chlorophenyl)thiourea: a monoclinic polymorph

C. I. Yeo and E. R. T. Tiekink

Comment

In connection with the synthesis and structural studies of thiocarbamides (Ho et al., 2005), diarylthioureas are sometimes isolated as the undesired hydrolysis by-product (Kuan \& Tiekink, 2007). The title compound, (I), was isolated in crystalline form during the attempted synthesis of $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-o\right) \mathrm{N}(\mathrm{H}) \mathrm{C}(=\mathrm{S}) \mathrm{O}-i$ - Pr . The structure of (I) is reported herein. A previously reported orthorhombic form of (I) exists in the literature (Ramnathan et al., 1996).

The molecular structure of (I), Fig. 1, is twisted about the central $\mathrm{N}-\mathrm{C}$ bonds. With reference to the central plane through the $\mathrm{CN}_{2} \mathrm{~S}$ chromophore [r.m.s. deviation $=0.0029 \AA$], the C 2 -benzene ring is almost perpendicular [dihedral angle $=85.20$ $(6)^{\circ}$] and the C 8 -ring is twisted [dihedral angle $=49.32(6)^{\circ}$]; the dihedral angle between the benzene rings is $55.37(7)^{\circ}$. The amide-H atoms are syn to each other. The syn conformation observed for the thiourea chromophore in (I) is quite distinct to that found in the orthorhombic polymorph (Ramnathan et al., 1996).

In the orthorhombic form of (I), the amide-H atoms are anti to each other. This key difference between the molecular structures in the two polymorphs is highlighted in the overlay diagram shown in Fig. 2. The anti orientation allows for the formation of eight-membered $\{\cdots \mathrm{HNCS}\}_{2}$ synthons in the crystal packing in the orthorhombic polymorph. By contrast, the crystal structure of (I) features supramolecular zigzag chains along the c axis mediated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (Table 1 and Fig. 3); the S 1 atom is bifurcated. Chains assemble into layers by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions (Fig. 4) and the layers thus formed stack along the a axis (Fig. 5).

Experimental

2-Chlorophenyl isothiocyanate (2 ml) was added drop-wise to a stirred solution of NaOH (1 mol equiv.) in i- $\mathrm{PrOH}(25 \mathrm{ml})$ and stirred for 3 h . Excess $\mathrm{HCl}(50 \% \mathrm{M} / \mathrm{v})$ was then added and the solution was stirred for a further 2 h . The product was then extracted with CHCl_{3} and left for evaporation at room temperature yielding colourless crystals after 3 days; M.pt: 394-396 K. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3348 ; v(\mathrm{C}-\mathrm{N}) 1498 ; v(\mathrm{C}=\mathrm{S}) 1201$.

Refinement

Carbon-bound H -atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H} 0.95 \AA)$ and were included in the refinement in the riding model approximation, with $U_{\mathrm{iso}}(\mathrm{H})$ set to $1.2 U_{\mathrm{eq}}(\mathrm{C})$. The N -bound H -atoms were located in a difference Fourier map but were refined with a distance restraint of $\mathrm{N}-\mathrm{H}=0.88 \pm 0.01 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Figures

Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2. Overlay diagram of (I) (shown in blue) with the two independent molecules found in the orthorhombic polymorph (see text), shown in red and green. The central thiourea fragments have been fitted.

Fig. 3. Supramolecular zigzag chain in (I) mediated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, shown as orange dashed lines.

Fig. 4. A view of the supramolecular two-dimensional array in the bc plane for (I). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts are shown as orange and blue dashed lines, respectively.

Fig. 5. Unit-cell contents for (I) shown in projection down the c axis, showing the stacking of supramolecular layers along the a axis. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts are shown as orange and blue dashed lines, respectively.

1,3-Bis(2-chlorophenyl)thiourea

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}$
$M_{r}=297.19$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=11.9999$ (3) \AA
$b=14.6811$ (3) \AA
$c=8.0806(2) \AA$
$\beta=109.509(1)^{\circ}$
$V=1341.84$ (5) \AA^{3}
$Z=4$
$F(000)=608$
$D_{\mathrm{x}}=1.471 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2105 reflections
$\theta=2.3-25.4^{\circ}$
$\mu=0.62 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, colourless
$0.20 \times 0.06 \times 0.02 \mathrm{~mm}$

Data collection

Bruker SMART APEX
diffractometer
Radiation source: fine-focus sealed tube
graphite
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.644, T_{\text {max }}=0.746$
12491 measured reflections

> 3090 independent reflections
> 2291 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.052$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=2.3^{\circ}$
> $h=-15 \rightarrow 15$
> $k=-19 \rightarrow 19$
> $l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.090$
$S=1.02$
3090 reflections
169 parameters
2 restraints

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cl2	$0.95110(5)$	$0.44450(4)$	$0.76829(8)$	$0.03177(16)$
C11	$0.51862(5)$	$0.24151(4)$	$0.54764(9)$	$0.03412(17)$
S1	$0.80893(5)$	$0.11833(4)$	$0.59792(7)$	$0.01789(13)$
N1	$0.73545(16)$	$0.18714(12)$	$0.8464(2)$	$0.0200(4)$
H1N	$0.740(2)$	$0.2301(12)$	$0.923(2)$	0.024^{*}
N2	$0.90127(15)$	$0.25343(12)$	$0.8279(2)$	$0.0189(4)$

H2N	$0.891(2)$	$0.2893(13)$	$0.907(2)$	0.023^{*}
C1	$0.81669(17)$	$0.18925(14)$	$0.7647(3)$	$0.0171(4)$
C2	$0.63988(18)$	$0.12309(15)$	$0.7997(3)$	$0.0192(4)$
C3	$0.53473(19)$	$0.14084(15)$	$0.6660(3)$	$0.0223(5)$
C4	$0.4428(2)$	$0.07777(17)$	$0.6227(3)$	$0.0280(5)$
H4	0.3708	0.0904	0.5311	0.034^{*}
C5	$0.4575(2)$	$-0.00316(17)$	$0.7142(3)$	$0.0290(6)$
H5	0.3955	-0.0468	0.6845	0.035^{*}
C6	$0.5615(2)$	$-0.02114(16)$	$0.8484(3)$	$0.0274(5)$
H6	0.5708	-0.0769	0.9112	0.033^{*}
C7	$0.6528(2)$	$0.04214(15)$	$0.8918(3)$	$0.0223(5)$
H7	0.7242	0.0298	0.9849	0.027^{*}
C8	$1.00456(18)$	$0.26531(15)$	$0.7822(3)$	$0.0190(5)$
C9	$1.03988(19)$	$0.35296(15)$	$0.7568(3)$	$0.0227(5)$
C10	$1.1449(2)$	$0.36828(17)$	$0.7252(3)$	$0.0292(6)$
H10	1.1687	0.4286	0.7104	0.035^{*}
C11	$1.2144(2)$	$0.2954(2)$	$0.7154(3)$	$0.0340(6)$
H11	1.2861	0.3054	0.6927	0.041^{*}
C12	$1.1804(2)$	$0.20762(18)$	$0.7386(3)$	$0.0308(6)$
H12	1.2284	0.1575	0.7303	0.037^{*}
C13	$1.07637(19)$	$0.19243(16)$	$0.7739(3)$	$0.0248(5)$
H13	1.0543	0.1321	0.7925	0.030^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C12	$0.0352(3)$	$0.0165(3)$	$0.0443(4)$	$-0.0053(2)$	$0.0142(3)$	$0.0001(3)$
C11	$0.0332(3)$	$0.0314(3)$	$0.0386(4)$	$0.0093(3)$	$0.0131(3)$	$0.0113(3)$
S1	$0.0192(3)$	$0.0152(3)$	$0.0199(3)$	$-0.0022(2)$	$0.0072(2)$	$-0.0024(2)$
N1	$0.0229(9)$	$0.0184(9)$	$0.0211(10)$	$-0.0073(8)$	$0.0105(8)$	$-0.0070(8)$
N2	$0.0195(9)$	$0.0151(9)$	$0.0231(10)$	$-0.0049(7)$	$0.0083(8)$	$-0.0045(7)$
C1	$0.0179(10)$	$0.0135(10)$	$0.0179(11)$	$0.0006(8)$	$0.0034(8)$	$0.0024(8)$
C2	$0.0181(10)$	$0.0202(11)$	$0.0229(11)$	$-0.0039(9)$	$0.0115(9)$	$-0.0062(9)$
C3	$0.0243(12)$	$0.0221(12)$	$0.0242(12)$	$-0.0004(9)$	$0.0130(9)$	$-0.0013(9)$
C4	$0.0197(11)$	$0.0412(15)$	$0.0239(12)$	$-0.0041(10)$	$0.0083(9)$	$-0.0069(11)$
C5	$0.0287(13)$	$0.0330(14)$	$0.0307(13)$	$-0.0163(11)$	$0.0170(11)$	$-0.0129(11)$
C6	$0.0358(13)$	$0.0212(12)$	$0.0312(13)$	$-0.0065(10)$	$0.0193(11)$	$-0.0015(10)$
C7	$0.0228(11)$	$0.0225(11)$	$0.0232(12)$	$-0.0032(9)$	$0.0099(9)$	$-0.0019(9)$
C8	$0.0161(10)$	$0.0221(11)$	$0.0176(11)$	$-0.0049(9)$	$0.0041(8)$	$-0.0021(9)$
C9	$0.0234(11)$	$0.0225(11)$	$0.0206(11)$	$-0.0055(9)$	$0.0051(9)$	$-0.0026(9)$
C10	$0.0287(13)$	$0.0324(14)$	$0.0274(13)$	$-0.0157(11)$	$0.0104(10)$	$-0.0035(11)$
C11	$0.0210(12)$	$0.0528(17)$	$0.0298(14)$	$-0.0131(12)$	$0.0108(10)$	$-0.0079(12)$
C12	$0.0210(12)$	$0.0378(14)$	$0.0325(14)$	$0.0013(11)$	$0.0075(10)$	$-0.0076(11)$
C13	$0.0202(11)$	$0.0252(12)$	$0.0261(12)$	$-0.0016(10)$	$0.0037(9)$	$-0.0023(10)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cl} 2-\mathrm{C} 9$	$1.737(2)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{Cl} 1-\mathrm{C} 3$	$1.736(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.389(3)$

sup-4

supplementary materials

S1-C1	1.681 (2)	C6-H6	0.9500
N1-C1	1.348 (3)	C7-H7	0.9500
N1-C2	1.433 (3)	C8-C9	1.391 (3)
N1-H1N	0.871 (10)	C8-C13	1.389 (3)
N2-C1	1.354 (3)	C9-C10	1.385 (3)
N2-C8	1.417 (3)	C10-C11	1.375 (4)
N2-H2N	0.872 (9)	C10-H10	0.9500
$\mathrm{C} 2-\mathrm{C} 7$	1.383 (3)	C11-C12	1.383 (4)
C2-C3	1.384 (3)	C11-H11	0.9500
C3-C4	1.392 (3)	C12-C13	1.388 (3)
C4-C5	1.379 (3)	C12-H12	0.9500
C4-H4	0.9500	C13-H13	0.9500
C5-C6	1.379 (3)		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	122.16 (18)	C7-C6-H6	120.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	116.2 (16)	C2-C7-C6	120.1 (2)
C2-N1-H1N	121.4 (16)	C2-C7- H 7	120.0
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 8$	126.73 (18)	C6-C7-H7	120.0
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	115.1 (15)	C9-C8-C13	118.7 (2)
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	118.1 (15)	C9-C8-N2	119.22 (19)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	113.90 (18)	C13-C8-N2	121.9 (2)
N1-C1-S1	121.53 (16)	C10-C9-C8	121.2 (2)
N2- $\mathrm{C} 1-\mathrm{S} 1$	124.56 (16)	C10-C9-Cl2	119.76 (18)
C7-C2-C3	119.4 (2)	C8-C9-C12	119.03 (17)
C7-C2-N1	119.08 (19)	C11-C10-C9	119.4 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	121.5 (2)	C11-C10-H10	120.3
C2-C3-C4	120.7 (2)	C9-C10-H10	120.3
C2-C3-Cl1	119.68 (17)	C10-C11-C12	120.4 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Cl} 1$	119.65 (18)	C10-C11-H11	119.8
C5-C4-C3	119.3 (2)	C12-C11-H11	119.8
C5-C4-H4	120.3	C11-C12-C13	120.2 (2)
C3-C4-H4	120.3	C11-C12-H12	119.9
C4-C5-C6	120.4 (2)	C13-C12-H12	119.9
C4-C5-H5	119.8	C12-C13-C8	120.1 (2)
C6-C5-H5	119.8	C12-C13-H13	120.0
C5-C6-C7	120.1 (2)	C8-C13-H13	120.0
C5-C6-H6	120.0		

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{n} \cdots \mathrm{S} 1^{\mathrm{i}}$	$0.873(17)$	$2.618(17)$	$3.4449(18)$	$158.6(19)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{n} \cdots \mathrm{S} 1^{\mathrm{i}}$	$0.868(18)$	$2.49(2)$	$3.3389(18)$	$166(2)$
$\mathrm{C} 13 — \mathrm{H} 13 \cdots \mathrm{Cl2} 2^{\mathrm{ii}}$	0.95	2.79	$3.660(2)$	152

Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2$; (ii) $-x+2, y-1 / 2,-z+3 / 2$.

supplementary materials

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

